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MOEA/D with NBI-style Tchebycheff approach for Portfolio
Management
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Abstract— MOEA/D is a generic multiobjective evolutionary = computational resources to different parts of the Pareto
optimization algorithm. MOEA/D needs a approach to decom-  fronts in a rational way. To overcome this shortcoming, we
pose a multiobjective optimization problem into a number  haye yecently proposed a simple and generic multiobjective

of single objective optimization problems. The commonly- . . o
used weighted sum approach and the Tchebycheff approach evolutionary algorithm framework based on decomposition

may not be able to handle disparately scaled objectives. This (MOEA/D) [3]. It decomposes a MOP into a number of
paper suggests a new decomposition approach, called NBI- scalar optimization subproblems. The optimal solutions to
style Tchebycheff approach, for MOEA/D to deal with such these subproblems are Pareto optimal to the MOP in question
objectives. A portfolio management MOP has been used as an nqer some mild conditions. These solutions could pro-
example to test the effectiveness of MOEA/D with NBI-style . . . .
Tchebycheff approach. vide a goqql apprommatl_on to the Pareto front_ |f_ a proper
decomposition scheme is used. MOEA/D optimizes these
I. INTRODUCTION subproblems simultaneously by evolving a population of
solutions. One of the key components in MOEA/D is its

A multiobjective optimization problem (MOP) has more o ;
- L . . “decomposition methods. Two commonly-used aggregation
than one often conflicting objectives. No single solution . .
. o . methods, i.e., the weighted Tchebycheff approach and the

can optimize these objectives at the same time. One has. S

o . . .. Wweighted sum approach, have been tried in MOEA/D. The
to balance these objectives. A solution to a multiobjective _: . .
R . . . . major shortcoming of these two approach is that they are
optimization is called Pareto optimal if any improvement in o L oo .
o . . sensitive to scales of the objectives. One contribution of this
one objective must lead to deterioration to at least one other

o - . : per is to propose a simple decomposition method, the NBI-
objective. Pareto optimal solutions are candidates for the bé;?/le Tchebycheff approach, for MOEA/D for overcoming it.

trade-off solution since there is no reason for choosing a ST . - .
. . . . . A central task in financial management is to combine
nonPareto optimal solution which can be improved in at Ieaﬁt

o . . . “financial assets into a portfolio under some real-life con-

one objective and not be deteriorated in any other objectives. . .
s . Straints [4][5][6]. Often, an investor has to balance two
There may be many, even infinitely many, Pareto solutions .. . i o
SO S o conflicting objectives, namely, maximization of the expected
to a multiobjective optimization problem. A decision maker

. . - r?turn of the portfolio and minimization of its variance (i.e.
often requires a set of well representative Pareto optimal . L
risk). Therefore, a portfolio optimization problem by nature

solutions for comparison before making their final deC|5|on|. biobjective and their two objectives are often of very

A number of evolutionary algorithms have been propose itferent scales. In this paper, we apply MOEA/D with the

for multiobjective optimization problems over the last twoy, :
decades [1][2]. The major advantage of these muItiobjecN-Bl style Tchebycheff approach on a portfolio management

. : . o problem. Some effort has also been made to deal with the
tive evolutionary algorithms (MOEA) over other trad't'onalconstraints. We have compared our algorithm with NSGA-

methods are that they work with a population of candidatﬁ on this problem. Our experimental results show that
solutions and thus are able to produce a set of Pare(go X

optimal solutions in a single run. The majority of the state- ar fa;l)_proach 'S a very pg(l)m|smg tool for this biobjective
of-the-art MOEAs treat a MOP as a whole and use thBOrtOIO management problem.

Pareto dominance relationships among the solutions visited Il. MOEA/D wITH THE NBI-STYLE TCHEBYCHEFF

so far for identifying promising areas in the search space. APPROACH FOR BIOBJECTIVEOPTIMIZATION

These Pareto dominance based algorithms could drive its|n the following, we consider the following generic biob-
population towards the Pareto front. They, however, ofteactive optimization problem:

fail to generate a set of solution uniformly distributed along o

the Pareto front since it is very different to allocate the minimize F(z) = (f1(z), f2(z)) 1)

subject to z el
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used for solving different subproblems. A neighborhood re-
lationship among all the subproblems (procedures) is d&fine

based on the distances of their weight vectors. Neighboring
subproblems should have similar fithess landscapes and opti
mal solutions. Therefore, neighboring procedures candspee
up their searches by exchanging information. In a simple
version of MOEA/D [3], each individual procedure keeps

one solution in its memory, which could be the best solution
found so far for its subproblems; it generates a new solution
by performing genetic operators on several solutions from
its neighboring procedures, and updates its memory if the
new solution is better than old one for its subproblem. A

The optimal solution of
subproblem i f\ =

Pareto front

procedure also passes its new generated solution on to some fi
(or all) of its neighboring procedures, who will update thei
current solutions if the received solution is better. A majo
advantage of MOEA/D is that single objective local search
can be used in each procedure in a natural way, since its task
is to optimizie a single objective subproblem. where; and )\, are

The weighted Tchebycheff approach and the weighted sum
approach are two commonly-used strategies for decomposing
an MOP into multiple single objective subproblems. The A=
weighted sum approach can deal with convex MOPs but may Ay =
fail in other MOPs. The weighted Tchebycheff approach can

H H H 112 _
to the scales of objectives. In [7], a direction-based dgumpm . . . ’ .
) [7] defined by(A1, \2) is perpendicular ta&F! 2. The optimal

sition method, called the normal boundary intersectionIjNB luti to the ab borobl b v distdbut
approach, was proposed. It attempts to find the intersectigh. - 'Ot?ls SF _?_ha.l %Ve su pro't. ems can etr(]even y.t.ls i futhe
points between the Pareto front and a number of straig ong the = This decomposition requires the position ®

lines, which are defined by a normal vector and a set (Ssﬁgsfi)t(lartzr;iyp?r:gti?ag]p:\c/l)f()iigieDs’ these two points can be
uniformly-distributed points in the convex hull of individl . :
minima (CHIM). Compared with the weighted Tchebycheff M_QEA./D \.N'th thefaltl)ove.NBI-ster Tchebycheff decom-
approach and the weighted sum approach, the NBI approa%ﬂs't'on IS givén as follows: (tn) 1
is relatively insensitive to the scales of objective fuoos. (l?e a(lj%())nthm.alms at m|n|mi|z_|n@ (], ),
However, NBI can not be easily used within MOEA/D since? (x[r*7, A) simultaneouslyz” is the current solution
it introduces extra consiraints to the subproblem of minimization of*™ (z|r(",\). In

In this paper, we take the advantages of both the NBI a&_tep 11, _the neighborhopd structure among subproblems
proach and the Tchebycheff approach for decomposition a established. Since neighboring subproblems have close

propose a NBI-style Tchebycheff approach for decomposir{j&ferencebpombtls' I Ish reasc_)ne_ilble to _asslum:e that tv;o nellgh-
the biobjecitive optimization (1). In the following, we egn ~ 00'1Nd Subproblems have similar optimal solutions. Step 1.

how it works. LetF! — (FL, F}) andF? — (F2, F2) be the randomly select a solutior’ from the feasible search region
. - 1>+2 - 1,42

two extreme points of the PF of (1) in the objective space® be the. initial solution to supproblem L= 1"'.”N'.
P @) ) P Step 1.3 finds the smallest function value for each individua

Fig. 1. lllustration of the distribution of-(4).

|F3 — F3| 4
|FE — F}| (5)

N reference points(9, i = 1,..., N, are set to béV points -F - o ) o
which are evenly distributed along the line segment linkin b].eCt'Ve and then initialize two extre.me. poifts 'C.mdF '
FLandF2. ie. hich are needed to compute the objective function value of
' each subproblem. Step 2.1 is to generate a new solytion
r® = F' + (1 — o) F? (2) for subproblemi. The parents of; are current solutions to
some neighbors of subproblemTherefore, it is very likely
where N thaty is a good solution to subprobleimand its neighbors.
= — ! For this reasony is used to update the current solutions to
N-1 these subproblems in Step 2.3. Step 2.2 is to chedk(if)
for i = 1,...,N. Then we can decompose (1) inf¥§ can be a better approximate to the two extreme points of the

single objective subproblems. Theth one is to minimize CHIM.
the following function: It should be pointed out that several other improvements
on MOEA/D have been made very recently. Li and Zhang
) (@) 3y ) suggested using two different neighborhood structures for
9" (|rt”, A) = max{A1 (f1(z) — "1 ); balancing exploitation and exploration [8]. Zhang et al [9]
A2(fa(z) — rél))} (3) proposed a scheme for dynamically allocating computationa
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Input
« Biobjective Optimization Problem (1);
« A stopping criterion;
« N the number of the subproblems;
o T: The neighborhood size.
Output Approximation to the PFF(z1), ..., F(zV).
Step 1lnitialization
Step 1.1Compute neighborhood
For eachi=1,...,N, setB(i) = {i1,...,ir}
wherer;,, ..., r;, are thel closest values to;.
Step 1.2Initialize population
Generater!, . ..,z randomly from the feasible
search region. SetV? = F(z?) .
Step 1.3Estimate the extreme points of CHIM:
SetF* to be the pointamongr Vv, ... FVN}
with the smallestf;, function value,k =1, 2.
Step 2Update
For eachi € {1,...,N}, do
Step 2.1:Reproduction:
Randomly choose several distinct indexes
p1,---,p; from B(i), perform a genetic operatd
on zP* ... zPi to generate a new solution
Repairy if it is an infeasible solution.
Step 2.2Re-estimate of the extreme points
CHIM:
For eachk = 1,2, if fi(y) is the smaller that
the fi value in F*, then replaceF* by F(y).
Step 2.3Update neighboring solutions:
For each indexi € B(i), if g™ (y|r(®,\)
g (27|r(), \), then setr/ = y and FV7
F(y).
Step 3 Stopping condition
If the stopping criteria is satisfied, then st
and outputF(z'), ..., F(z). Otherwise, go to
Step 2

Fig. 2.

=
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A

p

MOEA/D with NBI-style Tchebycheff approach

« W: the budget.
« n: the number of the assets available.
o ¢;: the unit price of asset
« 1;: the expected return rate of asset
« 0;;: the covariance between assetand j.
e g; : N — R™: a cost function for investing in assét
i.e., the overall cost for the purchase/ofinits of asset
i 1s g;(k). A major factor associated with this function
is the transaction cost.
« 75: the safe rate for investing in a settlement account.
« K: the maximal number of assets allowed to invest.
The decision variables are
« x;: the amount of money used for buying asset
The constraints are
o x; is the exact cost for buying an integer number of
units of asset. i.e., there exists an integér such that

9i(ki) (6)
« The overall money spent cannot excess the budget.

i=1

« The total number of assets to invest, i.e., the number of
x; with positive values, can not be larger thanh

The goal is to maximize the expected return rate:

T

)

R %[(W =Y a )+ Y (ki) — 1 @)

and minimize the variance:

n n

V= Z Z(kici)(kjcj)aif

i=1 i=1

9)

where(1+1r;)k;c; in R is the return generated ldy units of
asseti, and(W — > | x;)(1+47s) is the return by investing
the remainder in a settlement account; in V' is the actual
volume of asset in the portfolio.

This problem, first presented in [13], was among the first

effort to different procedures in MOEA/D in order to reduce?ttempts to investigate transaction costs and integer con-
the overall cost and improve the algorithm’s performancétra'ms at the same time. lee_ other_portfoho optimizatio
this implementation of MOEA/D is efficient and effective andProblems with real-life constraints, this problem cannet b
has won the CEC’'09 MOEA competition. Nebro and DurilloSClved directly by traditional quadratic programming meth
developed a thread-based parallel version of MOEA/D [10PdS Since it involves integer variables. Very often, the two
which can be executed on multi-core computers. Palmers @i€ctives are with very difference scales; the risk is rofte
al. proposed an implementation of MOEA/D in which eacr.§maller thap 1 while the return can be in the scale of 10,000
procedure record more than one solutions [11]. Ishibuchi 1 Our test instances.

al. proposed using different aggregation functions aedéfht
search stages [12]. The work in this paper represents

attempt to develop a simple and yet efficient decomposition

method in the framework of MOEA/D.

IIl. CONSTRAINED BIOBJECTIVE PORTFOLIO
OPTIMIZATION PROBLEM

This is the major reason why we use MOEA/D with the
NBI-style Tchebycheff approach for solving this problem.
IV. SIMULATION RESULTS
A. Test Instances

8 test instances have been constructed. The characteristic
of these instances are given in Table I. The data in these

We consider the following constrained biobjective portfoinstances (i.e., price of the unit of each stock and dailyrret

lio optimization problem:
Given
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TABLE |

C. Performance Metrics
PORTFOLIOOPTIMIZATION TESTINSTANCES

In our experiments, the following performance indexes are

Instance Name| n K | Scale used
CPO1 30 | 30 | small ' )
CPO2 50 | 50 | small « Set Coverage (-metric): Let A and B be two approx-
CPO3 100 | 100 | large imations to the PF of a MOW; (A, B) is defined as the
CPO4 150 | 150 | large percentage of the solutions B that are dominated by
CPO5 30 | 10 | small R
CPO6 50 T 10 | small at least one solution id, i.e.,
CPO7 100 | 30 | large |{ ) .
u € B|Fv € A : v dominatesu}|
CPO8 150 | 30 | large C(A,B) =

|B|

C(A,B) is not necessarily equal ta — C(B, A).

four instances withK' = n, i.e., they have no constraint on C(A,B) = 1 means that all solutions i are dom-

the number of the assets to |n¥est. I|r|1 the ot.her<four mst(ajance inated by some solutions inl, while C(A, B) = 0
K < m. Four instances are of sma SIz€, 1.8..~ 50 an implies that no solution iB is dominated by a solution
the other four ones are of large scale with> 100. in A

we have considered the following three types of transaction | .

. . Inverted Generational Distance (IGD-metric): Let
costs in defining the(-):

P* be a set of well representative points along the

- Zero transaction cost; PF. Let A be an approximation to the PF, the average
« fixed transaction cost; which is 50 pounds for each asset.  jistance fromP* to A is defined as:

« proportional cost, the cost % of the values of the
brop ‘ Suep- d(v, A)

assets. D(A,P*) =
The initial budget is set to be 50,000 pounds. The safe rate |P*|
of investing money in settlement accountis 2.5%. whered(v, A) is the minimum Euclidean distance be-

. . tweenv and the points inA. If |P*| is large enough
B. Expenmenteﬂ Settings to represent the PF very wel)(A, P*) could measure

In MOEA/D with the NBI-style Tchebycheff approach, the 41 the diversity and convergence 4fin a sense. To
setting is as follows: have a low value of)(A, P*). The setA must be very

1) Reproduction Operator in Step 2.Differential evo- close to thePF and cannot miss any part of the whole
lution (DE) mutation is used in this paper. Three distinct pp

indexespi, p2, p3 are randomly selected fronB(i), vy is

i L In our experiments, we do not know the actual PF. For
created in the following:

each instances, we sét* to be the set of non-dominated
yi =2t + F - (a? — al®) (10) solutions obtained from all the runs of two algorithms.

whereF' is a control parametef;’ = 0.5 in our experiments. p. Experimental Results
2) Repair Operator: If a solution y violates the con-

straints, we repair it with the following procedure: 1) Results in the case of zero transaction cokibles |l

: . . and Il show the mean and standard deviation (std) values

! If any component of is negative, set it to be zero. of C-metric and IGD-metric found by MOEA/D and NSGA-

2 If the number of nonzero componentsyinis larger Il on the instances with zero transaction cost. From these
than X, then randomly select and set some COMrasults, it is clear that MOEA/D performs better than NSGA-
ponents to z.erol such that the number of NONZEIR 41 all the instances except CPO7. However, neither of
components iry is K. . i these two algorithms can find solutions dominating more

3 For each component n v, Set?_ﬁ = ?W than 50% of those found by the other. The non-dominated

4 For each componeny; in y, find k; such that gonts found by MOEA/D and NSGA-II in the best run with
g(ki) < yi < g(ki +1) and then sey; = g(k). the smallest IGD value among 20 runs on each instance

S Randomly choose with y; > 0 and then invest 5o piotted in Fig. 3 and 4. Fig. 3 clearly shows that the

W —3_i_1 y: on asset as much as possible.  555r65imations obtained by MOEA/D are better than those

3) Parameter Settings: by NSGA-Il in CPO1-4. Fig .4 suggests that there is not

« Population sizeV = 50 for small scale instances, andmuch difference visually between the best approximations
N =100 for large scale instances obtained by two algorithms for CPO5-8.

e T'=N/2in MOEA/D. 2) Results in the case of fixed transaction cosables

« The algorithm stops after 100 generations. IV and V present the mean and std values of C-metric and

20 runs were made on each algorithm on each instance. IGD-metric found by MOEA/D and NSGA-Il on CPO1-4

4) Algorithm in Comparison:For comparison, we also with fixed transaction costs. It can be observed from Table
tested NSGA-II on these instances, the settings of populati IV that, in terms of C-metric, MOEA/D performs worse than
size and the stopping condition are the same as in MOEA/DSGA-II on two small instances - CPO1 and CPO2, but
NSGA-II also used the same reproduction operators. better on two large instances - CPO3 and CPO4. The results
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C-METRIC OFMOEA/D AND NSGA-II oN CPO1-8WITH ZERO

TABLE Il

TRANSACTION COST

C-METRIC OFMOEA/D AND NSGA-Il oN CPO1-4wWITH

TABLE VI

PROPORTIONAL TRANSACTION COST

C-metric | C(MOEA/D,NSGA-I) | C(NSGA-Il, MOEA/D) C-metric | C(MOEA/D,NSGA-) | C(NSGA-II, MOEA/D)
CPO1 11.50% 29.95% CPO1 20.20% 10.27%
CPO2 16.49% 28.63% CPO?2 15.55% 21.14%
CPO3 19.25% 29.73% CPO3 18.02% 42.17%
CPO4 20.19% 40.74% CPO4 16.56% 60.45%
CPO5 14.06% 25.95%

CPO6 15.22% 26.31%
CPO7 37.11% 25.14% TABLE VI
CPO8 25.36% 20.76% IGD-METRIC OF MOEA/D AND NSGA-Il oN CPO1-4WITH
PROPORTIONAL TRANSACTION COST
TABLE Il [GD-metric | MOEA/D NSGAI
IGD-METRIC OF MOEA/D AND NSGA-II ON CPO1-8WITH ZERO CPO1 0.0023(0.0011) | 0.0054 (0.0005)
TRANSACTION COST CPO2 0.0034 (0.0016)| 0.0153 (0.0041)
CPO3 0.0032 (0.0011)] 0.0088 (0.0022)
IGD-metric MOEA/D NSGA-II CPO4 0.0036 (0.0012)| 0.0075 (0.0028)
CPO1 0.0066(0.0015)| 0.0087(0.0010)
CPO2 0.0042(0.0012)| 0.0083(0.0032)
CPO3 0.0030(0.0008)| 0.0091(0.0032)
CPOZ | 0.0057(0.0023)] 0.0125(0.0041) V. CONCLUSION
CPO5 0.0025(0.0027)| 0.0074(0.0062)
CPO6 0.0024(0.0025)| 0.0075(0.0072) In this paper, we proposed the NBI-style Tchebycheff
CPO7 | 0.0058(0.0016)| 0.0053(0.0012) approach for MOEA/D. In this approach, all the subprob-
CPO8 0.0059(0.0026)| 0.0189(0.0143)

performs very similarly on CPOL.

and IGD-metric found by MOEA/D and NSGA-Il on CPO1-

lems have the same weight vector. Their reference points

are evenly distributed along the CHIM. MOEA/D with

the NBI-style Tchebycheff approach can deal with MOPs

in Table V indicates that MOEA/D outperforms NSGA-Il onith disparately scaled objectives. We tested this version

all four instances in terms of the IGD value. Fig. 5 shows thiOEA/D on a biobjective optimization problem for portfolio

best approximations produced by MOEA/D are much bett¢hanagement, which has disparately scaled objectives. Our

than those by NSGA-Il on CPO2-4, and the two algorithmgxperimental results have shown that it is very promising.

In the future, we aim to investigate and improve the
3) Results in the case of proportional transaction cost: performances of MOEA/D with the NBI-style Tchebycheff

Tables VI and VIl give the mean and std values of C-metrigpproach on other complicated MOPs.

4 with proportional transaction cost. Table VI shows that

MOEA/D performs better than NSGA-Il on CPO2-4 and
poorer on CPOL1. Table VII show that MOEA/D performs

better in terms of the ICD-metric on four instances. Fig. 6

(1]
[2]

shows the the best approximations obtained by MOEA/D are
much better than those by NSGA-II on all the four instances.

TABLE IV
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