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Abstract— MOEA/D is a generic multiobjective evolutionary
optimization algorithm. MOEA/D needs a approach to decom-
pose a multiobjective optimization problem into a number
of single objective optimization problems. The commonly-
used weighted sum approach and the Tchebycheff approach
may not be able to handle disparately scaled objectives. This
paper suggests a new decomposition approach, called NBI-
style Tchebycheff approach, for MOEA/D to deal with such
objectives. A portfolio management MOP has been used as an
example to test the effectiveness of MOEA/D with NBI-style
Tchebycheff approach.

I. I NTRODUCTION

A multiobjective optimization problem (MOP) has more
than one often conflicting objectives. No single solution
can optimize these objectives at the same time. One has
to balance these objectives. A solution to a multiobjective
optimization is called Pareto optimal if any improvement in
one objective must lead to deterioration to at least one other
objective. Pareto optimal solutions are candidates for the best
trade-off solution since there is no reason for choosing a
nonPareto optimal solution which can be improved in at least
one objective and not be deteriorated in any other objectives.
There may be many, even infinitely many, Pareto solutions
to a multiobjective optimization problem. A decision maker
often requires a set of well representative Pareto optimal
solutions for comparison before making their final decision.

A number of evolutionary algorithms have been proposed
for multiobjective optimization problems over the last two
decades [1][2]. The major advantage of these multiobjec-
tive evolutionary algorithms (MOEA) over other traditional
methods are that they work with a population of candidate
solutions and thus are able to produce a set of Pareto
optimal solutions in a single run. The majority of the state-
of-the-art MOEAs treat a MOP as a whole and use the
Pareto dominance relationships among the solutions visited
so far for identifying promising areas in the search space.
These Pareto dominance based algorithms could drive its
population towards the Pareto front. They, however, often
fail to generate a set of solution uniformly distributed along
the Pareto front since it is very different to allocate the
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computational resources to different parts of the Pareto
fronts in a rational way. To overcome this shortcoming, we
have recently proposed a simple and generic multiobjective
evolutionary algorithm framework based on decomposition
(MOEA/D) [3]. It decomposes a MOP into a number of
scalar optimization subproblems. The optimal solutions to
these subproblems are Pareto optimal to the MOP in question
under some mild conditions. These solutions could pro-
vide a good approximation to the Pareto front if a proper
decomposition scheme is used. MOEA/D optimizes these
subproblems simultaneously by evolving a population of
solutions. One of the key components in MOEA/D is its
decomposition methods. Two commonly-used aggregation
methods, i.e., the weighted Tchebycheff approach and the
weighted sum approach, have been tried in MOEA/D. The
major shortcoming of these two approach is that they are
sensitive to scales of the objectives. One contribution of this
paper is to propose a simple decomposition method, the NBI-
style Tchebycheff approach, for MOEA/D for overcoming it.

A central task in financial management is to combine
financial assets into a portfolio under some real-life con-
straints [4][5][6]. Often, an investor has to balance two
conflicting objectives, namely, maximization of the expected
return of the portfolio and minimization of its variance (i.e.
risk). Therefore, a portfolio optimization problem by nature
is biobjective and their two objectives are often of very
different scales. In this paper, we apply MOEA/D with the
NBI-style Tchebycheff approach on a portfolio management
problem. Some effort has also been made to deal with the
constraints. We have compared our algorithm with NSGA-
II on this problem. Our experimental results show that
our approach is a very promising tool for this biobjective
portfolio management problem.

II. MOEA/D WITH THE NBI-STYLE TCHEBYCHEFF

APPROACH FOR BIOBJECTIVEOPTIMIZATION

In the following, we consider the following generic biob-
jective optimization problem:

minimize F (x) = (f1(x), f2(x)) (1)

subject to x ∈ Ω

MOEA/D (multiobjective evolutionary algorithm based on
decomposition) [3] is a simple and generic multiobjective
evolutionary algorithm. It uses an aggregation method to
decompose the MOP intoN single objective optimization
subproblems and solves these subproblems simultaneously
(whereN is a control parameter set by users). In MOEA/D,
N procedures are employed and different procedures are
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used for solving different subproblems. A neighborhood re-
lationship among all the subproblems (procedures) is defined
based on the distances of their weight vectors. Neighboring
subproblems should have similar fitness landscapes and opti-
mal solutions. Therefore, neighboring procedures can speed
up their searches by exchanging information. In a simple
version of MOEA/D [3], each individual procedure keeps
one solution in its memory, which could be the best solution
found so far for its subproblems; it generates a new solution
by performing genetic operators on several solutions from
its neighboring procedures, and updates its memory if the
new solution is better than old one for its subproblem. A
procedure also passes its new generated solution on to some
(or all) of its neighboring procedures, who will update their
current solutions if the received solution is better. A major
advantage of MOEA/D is that single objective local search
can be used in each procedure in a natural way, since its task
is to optimizie a single objective subproblem.

The weighted Tchebycheff approach and the weighted sum
approach are two commonly-used strategies for decomposing
an MOP into multiple single objective subproblems. The
weighted sum approach can deal with convex MOPs but may
fail in other MOPs. The weighted Tchebycheff approach can
deal with non-convex MOPs. Both approaches are sensitive
to the scales of objectives. In [7], a direction-based decompo-
sition method, called the normal boundary intersection (NBI)
approach, was proposed. It attempts to find the intersection
points between the Pareto front and a number of straight
lines, which are defined by a normal vector and a set of
uniformly-distributed points in the convex hull of individual
minima (CHIM). Compared with the weighted Tchebycheff
approach and the weighted sum approach, the NBI approach
is relatively insensitive to the scales of objective functions.
However, NBI can not be easily used within MOEA/D since
it introduces extra constraints.

In this paper, we take the advantages of both the NBI ap-
proach and the Tchebycheff approach for decomposition and
propose a NBI-style Tchebycheff approach for decomposing
the biobjecitive optimization (1). In the following, we explain
how it works. LetF 1 = (F 1

1 , F 1
2 ) andF 2 = (F 2

1 , F 2
2 ) be the

two extreme points of the PF of (1) in the objective space,
N reference pointsr(i), i = 1, . . . , N , are set to beN points
which are evenly distributed along the line segment linking
F 1 andF 2, i.e.

r(i) = αiF
1 + (1− αi)F 2 (2)

where

αi =
N − i

N − 1

for i = 1, . . . , N . Then we can decompose (1) intoN
single objective subproblems. Thei-th one is to minimize
the following function:

g(tn)(x|r(i), λ) = max{λ1(f1(x)− r
(i)
1 ),

λ2(f2(x) − r
(i)
2 )} (3)
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Fig. 1. Illustration of the distribution ofr(i).

whereλ1 andλ2 are

λ1 = |F 2
2 − F 1

2 | (4)

λ2 = |F 2
1 − F 1

1 | (5)

As shown in Fig. 1, the line segmentF 1F 2 can be re-
garded as a linear approximation to the PF, and the direction
defined by(λ1, λ2) is perpendicular toF 1F 2. The optimal
solutions to the above subproblems can be evenly distributed
along the PF. This decomposition requires the position of the
two extreme points. In MOEA/D, these two points can be
substituted by their approximates.

MOEA/D with the above NBI-style Tchebycheff decom-
position is given as follows:

The algorithm aims at minimizingg(tn)(x|r(1), λ), . . .,
g(tn)(x|r(N), λ) simultaneously.xi is the current solution
to the subproblem of minimization ofg(tn)(x|r(i), λ). In
Step 1.1, the neighborhood structure among subproblems
are established. Since neighboring subproblems have close
reference points, it is reasonable to assume that two neigh-
boring subproblems have similar optimal solutions. Step 1.2
randomly select a solutionxi from the feasible search region
to be the initial solution to subproblemi, i = 1, . . . , N .
Step 1.3 finds the smallest function value for each individual
objective and then initialize two extreme pointsF 1 andF 2,
which are needed to compute the objective function value of
each subproblem. Step 2.1 is to generate a new solutiony
for subproblemi. The parents ofy are current solutions to
some neighbors of subproblemi. Therefore, it is very likely
that y is a good solution to subproblemi and its neighbors.
For this reason,y is used to update the current solutions to
these subproblems in Step 2.3. Step 2.2 is to check ifF (y)
can be a better approximate to the two extreme points of the
CHIM.

It should be pointed out that several other improvements
on MOEA/D have been made very recently. Li and Zhang
suggested using two different neighborhood structures for
balancing exploitation and exploration [8]. Zhang et al [9]
proposed a scheme for dynamically allocating computational
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Input
• Biobjective Optimization Problem (1);
• A stopping criterion;
• N the number of the subproblems;
• T : The neighborhood size.

Output Approximation to the PF:F (x1), . . . , F (xN ).
Step 1Initialization

Step 1.1Compute neighborhood
For eachi = 1, . . . , N , setB(i) = {i1, . . . , iT }
whereri1 , . . . , riT are theT closest values tori.
Step 1.2Initialize population
Generatex1, . . . , xN randomly from the feasible
search region. SetFV i = F (xi) .
Step 1.3Estimate the extreme points of CHIM:
SetF k to be the point among{FV 1, . . . , FV N}
with the smallestfk function value,k = 1, 2.

Step 2Update
For eachi ∈ {1, . . . , N}, do
Step 2.1:Reproduction:
Randomly choose several distinct indexes
p1, . . . , pj from B(i), perform a genetic operator
on xp1 , . . . , xpj to generate a new solutiony.
Repairy if it is an infeasible solution.
Step 2.2Re-estimate of the extreme points in
CHIM:
For eachk = 1, 2, if fk(y) is the smaller that
the fk value inF k, then replaceF k by F (y).
Step 2.3Update neighboring solutions:
For each indexj ∈ B(i), if g(tn)(y|r(i), λ) ≤
g(tn)(xj |r(j), λ), then setxj = y and FV j =
F (y).

Step 3 Stopping condition
If the stopping criteria is satisfied, then stop
and outputF (x1), . . . , F (xN ). Otherwise, go to
Step 2.

Fig. 2. MOEA/D with NBI-style Tchebycheff approach

effort to different procedures in MOEA/D in order to reduce
the overall cost and improve the algorithm’s performance;
this implementation of MOEA/D is efficient and effective and
has won the CEC’09 MOEA competition. Nebro and Durillo
developed a thread-based parallel version of MOEA/D [10],
which can be executed on multi-core computers. Palmers et
al. proposed an implementation of MOEA/D in which each
procedure record more than one solutions [11]. Ishibuchi et
al. proposed using different aggregation functions at different
search stages [12]. The work in this paper represents an
attempt to develop a simple and yet efficient decomposition
method in the framework of MOEA/D.

III. C ONSTRAINED BIOBJECTIVE PORTFOLIO

OPTIMIZATION PROBLEM

We consider the following constrained biobjective portfo-
lio optimization problem:
Given

• W : the budget.
• n: the number of the assets available.
• ci: the unit price of asseti.
• ri: the expected return rate of asseti.
• σij : the covariance between assetsi andj.
• gi : N → R+: a cost function for investing in asseti.

i.e., the overall cost for the purchase ofk units of asset
i is gi(k). A major factor associated with this function
is the transaction cost.

• rs: the safe rate for investing in a settlement account.
• K: the maximal number of assets allowed to invest.

The decision variables are
• xi: the amount of money used for buying asseti.

The constraints are

• xi is the exact cost for buying an integer number of
units of asseti. i.e., there exists an integerki such that

xi = gi(ki) (6)

• The overall money spent cannot excess the budget.
n∑

i=1

xi ≤ W (7)

• The total number of assets to invest, i.e., the number of
xi with positive values, can not be larger thanK.

The goal is to maximize the expected return rate:

R =
1
W

[(W −
n∑

i=1

xi)(1 + rs) +
n∑

i=1

(1 + ri)kici]− 1 (8)

and minimize the variance:

V =
n∑

i=1

n∑
i=1

(kici)(kjcj)σij (9)

where(1+ri)kici in R is the return generated byki units of
asseti, and(W −∑n

i=1 xi)(1+rs) is the return by investing
the remainder in a settlement account.kici in V is the actual
volume of asseti in the portfolio.

This problem, first presented in [13], was among the first
attempts to investigate transaction costs and integer con-
straints at the same time. Like other portfolio optimization
problems with real-life constraints, this problem cannot be
solved directly by traditional quadratic programming meth-
ods since it involves integer variables. Very often, the two
objectives are with very difference scales; the risk is often
smaller than 1 while the return can be in the scale of 10,000
in our test instances.

This is the major reason why we use MOEA/D with the
NBI-style Tchebycheff approach for solving this problem.

IV. SIMULATION RESULTS

A. Test Instances

8 test instances have been constructed. The characteristics
of these instances are given in Table I. The data in these
instances (i.e., price of the unit of each stock and daily returns
of 1000 days) is based on the German stock index DAX,
which is available from the authors upon request. CPO1-4 are
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TABLE I

PORTFOLIOOPTIMIZATION TEST INSTANCES

Instance Name n K Scale
CPO1 30 30 small
CPO2 50 50 small
CPO3 100 100 large
CPO4 150 150 large
CPO5 30 10 small
CPO6 50 10 small
CPO7 100 30 large
CPO8 150 30 large

four instances withK = n, i.e., they have no constraint on
the number of the assets to invest. In the other four instances
K < n. Four instances are of small size, i.e.,n ≤ 50 and
the other four ones are of large scale withn ≥ 100.

we have considered the following three types of transaction
costs in defining theg(·):

• zero transaction cost;
• fixed transaction cost; which is 50 pounds for each asset.
• proportional cost, the cost is1% of the values of the

assets.
The initial budget is set to be 50,000 pounds. The safe rate
of investing money in settlement accountrs is 2.5%.

B. Experimental Settings

In MOEA/D with the NBI-style Tchebycheff approach, the
setting is as follows:

1) Reproduction Operator in Step 2.1:Differential evo-
lution (DE) mutation is used in this paper. Three distinct
indexesp1, p2, p3 are randomly selected fromB(i), y is
created in the following:

yi = xp1
i + F · (xp2

i − xp3
i ) (10)

whereF is a control parameter,F = 0.5 in our experiments.
2) Repair Operator: If a solution y violates the con-

straints, we repair it with the following procedure:
1 If any component ofy is negative, set it to be zero.
2 If the number of nonzero components iny is larger

than K, then randomly select and set some com-
ponents to zero such that the number of nonzero
components iny is K.

3 For each componentyi in y, setyi = yi∑ n
i=1 yi

W .
4 For each componentyi in y, find ki such that

g(ki) ≤ yi < g(ki + 1) and then setyi = g(ki).
5 Randomly choosei with yi > 0 and then invest

W −∑n
i=1 yi on asseti as much as possible.

3) Parameter Settings:
• Population sizeN = 50 for small scale instances, and

N = 100 for large scale instances
• T = N/2 in MOEA/D.
• The algorithm stops after 100 generations.

20 runs were made on each algorithm on each instance.
4) Algorithm in Comparison:For comparison, we also

tested NSGA-II on these instances, the settings of population
size and the stopping condition are the same as in MOEA/D.
NSGA-II also used the same reproduction operators.

C. Performance Metrics

In our experiments, the following performance indexes are
used.

• Set Coverage (C-metric): Let A andB be two approx-
imations to the PF of a MOP,C(A, B) is defined as the
percentage of the solutions inB that are dominated by
at least one solution inA, i.e.,

C(A, B) =
|{u ∈ B|∃v ∈ A : v dominatesu}|

|B|
C(A, B) is not necessarily equal to1 − C(B, A).
C(A, B) = 1 means that all solutions inB are dom-
inated by some solutions inA, while C(A, B) = 0
implies that no solution inB is dominated by a solution
in A.

• Inverted Generational Distance (IGD-metric): Let
P ∗ be a set of well representative points along the
PF. LetA be an approximation to the PF, the average
distance fromP ∗ to A is defined as:

D(A, P ∗) =
∑

v∈P∗ d(v, A)
|P ∗|

whered(v, A) is the minimum Euclidean distance be-
tween v and the points inA. If |P ∗| is large enough
to represent the PF very well,D(A, P ∗) could measure
both the diversity and convergence ofA in a sense. To
have a low value ofD(A, P ∗). The setA must be very
close to thePF and cannot miss any part of the whole
PF .

In our experiments, we do not know the actual PF. For
each instances, we setP ∗ to be the set of non-dominated
solutions obtained from all the runs of two algorithms.

D. Experimental Results

1) Results in the case of zero transaction cost:Tables II
and III show the mean and standard deviation (std) values
of C-metric and IGD-metric found by MOEA/D and NSGA-
II on the instances with zero transaction cost. From these
results, it is clear that MOEA/D performs better than NSGA-
II on all the instances except CPO7. However, neither of
these two algorithms can find solutions dominating more
than 50% of those found by the other. The non-dominated
fronts found by MOEA/D and NSGA-II in the best run with
the smallest IGD value among 20 runs on each instance
are plotted in Fig. 3 and 4. Fig. 3 clearly shows that the
approximations obtained by MOEA/D are better than those
by NSGA-II in CPO1-4. Fig .4 suggests that there is not
much difference visually between the best approximations
obtained by two algorithms for CPO5-8.

2) Results in the case of fixed transaction cost:Tables
IV and V present the mean and std values of C-metric and
IGD-metric found by MOEA/D and NSGA-II on CPO1-4
with fixed transaction costs. It can be observed from Table
IV that, in terms of C-metric, MOEA/D performs worse than
NSGA-II on two small instances - CPO1 and CPO2, but
better on two large instances - CPO3 and CPO4. The results
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Fig. 3. Plots of the best approximations in terms of the IGD-metric found by MOEA/D and NSGA-II for CPO1-CPO4 with zero transaction cost
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Fig. 4. Plots of the best approximations in terms of the IGD-metric found for CPO5-CPO8 with zero transaction cost
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Fig. 5. Plots of the best approximations in terms of the IGD-metric by MOEA/D and NSGA-II for CPO1-4 with fixed transactioncost
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Fig. 6. Plots of the best approximations in terms of the IGD-metric by MOEA/D and NSGA-II for CPO1-4 with proportional transaction cost
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TABLE II

C-METRIC OF MOEA/D AND NSGA-II ON CPO1-8WITH ZERO

TRANSACTION COST

C-metric C(MOEA/D,NSGA-II) C(NSGA-II, MOEA/D)
CPO1 11.50% 29.95%
CPO2 16.49% 28.63%
CPO3 19.25% 29.73%
CPO4 20.19% 40.74%
CPO5 14.06% 25.95%
CPO6 15.22% 26.31%
CPO7 37.11% 25.14%
CPO8 25.36% 29.76%

TABLE III

IGD-METRIC OF MOEA/D AND NSGA-II ON CPO1-8WITH ZERO

TRANSACTION COST

IGD-metric MOEA/D NSGA-II
CPO1 0.0066(0.0015) 0.0087(0.0010)
CPO2 0.0042(0.0012) 0.0083(0.0032)
CPO3 0.0030(0.0008) 0.0091(0.0032)
CPO4 0.0057(0.0023) 0.0125(0.0041)
CPO5 0.0025(0.0027) 0.0074(0.0062)
CPO6 0.0024(0.0025) 0.0075(0.0072)
CPO7 0.0058(0.0016) 0.0053(0.0012)
CPO8 0.0059(0.0026) 0.0189(0.0143)

in Table V indicates that MOEA/D outperforms NSGA-II on
all four instances in terms of the IGD value. Fig. 5 shows the
best approximations produced by MOEA/D are much better
than those by NSGA-II on CPO2-4, and the two algorithms
performs very similarly on CPO1.

3) Results in the case of proportional transaction cost:
Tables VI and VII give the mean and std values of C-metric
and IGD-metric found by MOEA/D and NSGA-II on CPO1-
4 with proportional transaction cost. Table VI shows that
MOEA/D performs better than NSGA-II on CPO2-4 and
poorer on CPO1. Table VII show that MOEA/D performs
better in terms of the ICD-metric on four instances. Fig. 6
shows the the best approximations obtained by MOEA/D are
much better than those by NSGA-II on all the four instances.

TABLE IV

C-METRIC OF MOEA/D AND NSGA-II ON CPO1-4WITH FIXED

TRANSACTION COST

C-metric C(MOEA/D,NSGA-II) C(NSGA-II, MOEA/D)
CPO1 18.63% 10.87%
CPO2 19.24% 9.92%
CPO3 22.50% 36.68%
CPO4 17.55% 58.74%

TABLE V

IGD-METRIC OF MOEA/D AND NSGA-II ON CPO1-4WITH FIXED

TRANSACTION COST

IGD-metric MOEA/D NSGA-II
CPO1 0.0021 (0.0004) 0.0057 (0.0020)
CPO2 0.0039 (0.0018) 0.0161 (0.0072)
CPO3 0.0119 (0.0061) 0.0179 (0.0043)
CPO4 0.0092 (0.0032) 0.0154 (0.0058)

TABLE VI

C-METRIC OF MOEA/D AND NSGA-II ON CPO1-4WITH

PROPORTIONAL TRANSACTION COST

C-metric C(MOEA/D,NSGA-II) C(NSGA-II, MOEA/D)
CPO1 20.20% 10.27%
CPO2 15.55% 21.14%
CPO3 18.02% 42.17%
CPO4 16.56% 60.45%

TABLE VII

IGD-METRIC OF MOEA/D AND NSGA-II ON CPO1-4WITH

PROPORTIONAL TRANSACTION COST

IGD-metric MOEA/D NSGA-II
CPO1 0.0023(0.0011) 0.0054 (0.0005)
CPO2 0.0034 (0.0016) 0.0153 (0.0041)
CPO3 0.0032 (0.0011) 0.0088 (0.0022)
CPO4 0.0036 (0.0012) 0.0075 (0.0028)

V. CONCLUSION

In this paper, we proposed the NBI-style Tchebycheff
approach for MOEA/D. In this approach, all the subprob-
lems have the same weight vector. Their reference points
are evenly distributed along the CHIM. MOEA/D with
the NBI-style Tchebycheff approach can deal with MOPs
with disparately scaled objectives. We tested this versionof
MOEA/D on a biobjective optimization problem for portfolio
management, which has disparately scaled objectives. Our
experimental results have shown that it is very promising.

In the future, we aim to investigate and improve the
performances of MOEA/D with the NBI-style Tchebycheff
approach on other complicated MOPs.
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